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The distinction between populations and samples and between population 

parameters and sample statistics 
 

 

Understanding the difference between populations and samples, as well as between 

population parameters and sample statistics, is fundamental in statistics and research 

methodology. 

1. Population vs. Sample: 

o Population: In statistics, a population refers to the entire group that you want 

to draw conclusions about. It includes all individuals or items that meet certain 

criteria. 

o Sample: A sample, on the other hand, is a subset of the population. It's a 

smaller group selected from the population, often in a systematic or random 

way, with the aim of making inferences about the entire population. 

2. Population Parameters vs. Sample Statistics: 

o Population Parameters: These are numerical values that describe certain 

characteristics of a population. For example, the mean (average), median, 

mode, standard deviation, variance, etc., are all population parameters. Since 

it's often impractical or impossible to measure an entire population, these 

parameters are usually unknown and must be estimated using sample statistics. 

o Sample Statistics: These are numerical values calculated from the data 

collected from a sample. They are used to estimate population parameters. For 

example, if you calculate the average height of 100 randomly selected people 

from a population, that average height is a sample statistic. It's used to 

estimate the population mean height. 

Population parameter vs. sample statistic 

When you collect data from a population or a sample, there are various measurements and 

numbers you can calculate from the data. A parameter is a measure that describes the whole 

population. A statistic is a measure that describes the sample. 

You can use estimation or hypothesis testing to estimate how likely it is that a sample statistic 

differs from the population parameter. 

https://www.scribbr.com/statistics/parameter-vs-statistic/
https://www.scribbr.com/statistics/hypothesis-testing/


Research example: Parameters and statisticsIn your study of students’ political attitudes, you 

ask your survey participants to rate themselves on a scale from 1, very liberal, to 7, very 

conservative. You find that most of your sample identifies as liberal – the mean rating on the 

political attitudes scale is 3.2. 

You can use this statistic, the sample mean of 3.2, to make a scientific guess about 

the population parameter – that is, to infer the mean political attitude rating of all 

undergraduate students in the Netherlands. 

Sampling error 

A sampling error is the difference between a population parameter and a sample statistic. In 

your study, the sampling error is the difference between the mean political attitude rating of 

your sample and the true mean political attitude rating of all undergraduate students in the 

Netherlands. 

Sampling errors happen even when you use a randomly selected sample. This is because 

random samples are not identical to the population in terms of numerical measures 

like means and standard deviations. 

Because the aim of scientific research is to generalize findings from the sample to the 

population, you want the sampling error to be low. You can reduce sampling error by 

increasing the sample size. 

Key Points: 

 Populations are the entire group of interest, while samples are subsets of populations. 

 Population parameters are characteristics of populations, while sample statistics are 

characteristics of samples. 

 Statistical inference involves using sample statistics to make educated guesses about 

population parameters. 

Understanding these distinctions is crucial for ensuring that the conclusions drawn from a 

sample accurately reflect the population it's drawn from. Improper sampling techniques or 

confusion between populations and samples can lead to biased or unreliable results. 

 

https://www.scribbr.com/commonly-confused-words/infer-vs-imply/#infer
https://www.scribbr.com/statistics/mean/
https://www.scribbr.com/statistics/standard-deviation/
https://www.scribbr.com/research-bias/generalizability/


The use of measures of location and variation to describe and summarize data 

Measures of location and variation are fundamental tools in descriptive statistics used to 

summarize and understand datasets. Here's an overview of each: 

1. Measures of Location (Central Tendency): These measures indicate the central or 

typical value of a dataset. Common measures of location include: 

o Mean: The average value calculated by summing up all values in the dataset 

and dividing by the total number of values. It is sensitive to outliers. 

o Median: The middle value in a dataset when arranged in ascending order. It is 

less affected by outliers compared to the mean. 

o Mode: The value(s) that occur most frequently in the dataset. A dataset may 

have one mode (unimodal) or multiple modes (multimodal). 

2. Measures of Variation (Dispersion): These measures describe the spread or 

variability of the data points around the measures of central tendency. Common 

measures of variation include: 

o Range: The difference between the maximum and minimum values in the 

dataset. It's simple but sensitive to outliers. 

o Variance: The average of the squared differences from the mean. It gives a 

measure of how much the values in the dataset deviate from the mean. 

However, it's not in the original units of the data, so the standard deviation is 

often preferred. 

o Standard Deviation: The square root of the variance. It provides a measure of 

the average distance of data points from the mean. It's commonly used because 

it's in the same units as the data and is sensitive to outliers. 

o Interquartile Range (IQR): The range between the first quartile (25th 

percentile) and the third quartile (75th percentile). It's less sensitive to outliers 

than the range. 

These measures collectively provide a comprehensive summary of the dataset, giving insight 

into its central tendency and dispersion. They help in understanding the distribution of data 

points, identifying outliers, and making comparisons between different datasets. Depending 

on the nature of the data and the objectives of analysis, different measures may be more 

appropriate. 



Population moments and their sample counterparts 

Population moments are statistical measures that describe the characteristics of a probability 

distribution for a population, while their sample counterparts are estimates of these moments 

computed from a sample of data drawn from that population. 

Here's an overview of some common population moments and their sample counterparts: 

1. Mean (First Moment): 

o Population Moment: The mean of a population is the average value of all the 

individual data points in the population. It's often denoted by μ (mu). 

o Sample Counterpart: The sample mean (xˉ\bar{x}xˉ) is calculated as the sum 

of all observations in the sample divided by the number of observations. 

2. Variance (Second Moment): 

o Population Moment: Variance measures the spread or dispersion of a 

population distribution. It's the average of the squared differences from the 

mean. Population variance is denoted by σ^2 (sigma squared). 

o Sample Counterpart: The sample variance (s^2) is an estimate of the 

population variance, calculated similarly, but dividing by n−1n-1n−1 instead 

of nnn to correct for bias. It's computed as the sum of the squared differences 

from the sample mean, divided by n−1n-1n−1, where nnn is the sample size. 

3. Standard Deviation: 

o Population Moment: The standard deviation is the square root of the variance. 

It's denoted by σ (sigma). 

o Sample Counterpart: The sample standard deviation (s) is the square root of 

the sample variance. It provides a measure of the dispersion of the sample data 

around the sample mean. 

4. Skewness (Third Moment): 

o Population Moment: Skewness measures the asymmetry of the probability 

distribution of a real-valued random variable about its mean. Positive 

skewness indicates a longer tail on the right, while negative skewness 

indicates a longer tail on the left. 



o Sample Counterpart: Sample skewness is an estimate of population skewness, 

calculated from sample data. It indicates the asymmetry of the sample 

distribution. 

5. Kurtosis (Fourth Moment): 

o Population Moment: Kurtosis measures the "tailedness" of the probability 

distribution of a real-valued random variable. It indicates whether the data are 

heavy-tailed or light-tailed relative to a normal distribution. 

o Sample Counterpart: Sample kurtosis is an estimate of population kurtosis, 

calculated from sample data. It provides information about the peakedness of 

the sample distribution. 

These moments and their sample counterparts are essential in descriptive statistics, as they 

provide insights into the central tendency, variability, and shape of a population or sample 

distribution. They help analysts understand the characteristics of data and make inferences 

about the underlying population based on sample data. 

 
Elementary Probability Theory 

Sample spaces and events; probability axioms and properties 

The fundamental concepts of probability theory: 

Sample Space and Events: 

1. Sample Space (S): The sample space is the set of all possible outcomes of a random 

experiment. It's denoted by SSS. For example, when rolling a fair six-sided die, the 

sample space is S={1,2,3,4,5,6}S = \{1, 2, 3, 4, 5, 6\}S={1,2,3,4,5,6}. 

2. Event (E): An event is a subset of the sample space, i.e., a collection of outcomes of 

interest. It's denoted by EEE. For example, if we define the event "rolling an even 

number," then E={2,4,6}E = \{2, 4, 6\}E={2,4,6}. 

Probability Axioms: 

The concept of probability is built on three fundamental axioms: 



1. Non-negativity: The probability of any event is a non-negative real number. That is, 

for any event EEE, 0≤P(E)≤10 \leq P(E) \leq 10≤P(E)≤1. 

2. Normalization: The sum of the probabilities of all possible outcomes in the sample 

space is 1. Mathematically, for a sample space SSS, P(S)=1P(S) = 1P(S)=1. 

3. Additivity: For mutually exclusive events (events that cannot occur simultaneously), 

the probability of their union is the sum of their individual probabilities. 

Mathematically, if E1E_1E1, E2E_2E2, ..., EnE_nEn are mutually exclusive events, 

then the probability of their union is: 

P(E1∪E2∪...∪En)=P(E1)+P(E2)+...+P(En)P(E_1 \cup E_2 \cup ... \cup E_n) = 

P(E_1) + P(E_2) + ... + P(E_n)P(E1∪E2∪...∪En)=P(E1)+P(E2)+...+P(En) 

Probability Properties: 

1. Complement: The complement of an event EEE (denoted by E′E'E′ or EcE^cEc) 

consists of all outcomes not in EEE. The probability of the complement of an event is 

1−P(E)1 - P(E)1−P(E). 

2. Intersection: The intersection of two events E1E_1E1 and E2E_2E2 (denoted by 

E1∩E2E_1 \cap E_2E1∩E2) consists of outcomes that belong to both events. The 

probability of the intersection of two events is denoted by P(E1∩E2)P(E_1 \cap 

E_2)P(E1∩E2). 

3. Union: The union of two events E1E_1E1 and E2E_2E2 (denoted by E1∪E2E_1 \cup 

E_2E1∪E2) consists of outcomes that belong to either event E1E_1E1 or event 

E2E_2E2. The probability of the union of two events is denoted by P(E1∪E2)P(E_1 

\cup E_2)P(E1∪E2). 

4. Independence: Two events E1E_1E1 and E2E_2E2 are independent if the occurrence 

of one event does not affect the occurrence of the other. In terms of probability, 

P(E1∩E2)=P(E1)×P(E2)P(E_1 \cap E_2) = P(E_1) \times P(E_2)P(E1∩E2)=P(E1

)×P(E2). 

5. Conditional Probability: The probability of event E1E_1E1 given that event 

E2E_2E2 has occurred is denoted by P(E1∣E2)P(E_1 | E_2)P(E1∣E2) and calculated 

as P(E1∩E2)P(E2)\frac{P(E_1 \cap E_2)}{P(E_2)}P(E2)P(E1∩E2), provided 

P(E2)>0P(E_2) > 0P(E2)>0. 



These axioms and properties form the foundation of probability theory and are used to 

calculate probabilities in various real-world scenarios, from gambling to weather forecasting 

to financial modeling. 

 Techniques conditional probability and Bayes' rule, independence 

Let's delve into counting techniques, conditional probability, Bayes' rule, and independence: 

Counting Techniques: 

Counting techniques are methods used to determine the number of possible outcomes of a 

particular event or experiment. Some common techniques include: 

1. Multiplication Rule: If a process consists of n1n_1n1 steps and the first step can 

occur in k1k_1k1 ways, the second step in k2k_2k2 ways, and so on, then the entire 

process can occur in k1×k2×...×kn1k_1 \times k_2 \times ... \times k_{n_1}k1×k2

×...×kn1 ways. 

2. Permutations: Permutations refer to the number of ways to arrange rrr objects from a 

set of nnn distinct objects. It's denoted by P(n,r)P(n, r)P(n,r) and calculated as 

n×(n−1)×...×(n−r+1)n \times (n-1) \times ... \times (n-r+1)n×(n−1)×...×(n−r+1). 

3. Combinations: Combinations refer to the number of ways to choose rrr objects from 

a set of nnn distinct objects without regard to the order. It's denoted by C(n,r)C(n, 

r)C(n,r) or (nr)\binom{n}{r}(rn) and calculated as n!r!×(n−r)!\frac{n!}{r! \times (n-

r)!}r!×(n−r)!n!. 

Conditional Probability: 

Conditional probability is the probability of an event occurring given that another event has 

already occurred. It's denoted by P(A∣B)P(A|B)P(A∣B) and calculated as: 

P(A∣B)=P(A∩B)P(B)P(A|B) = \frac{P(A \cap B)}{P(B)}P(A∣B)=P(B)P(A∩B) 

where P(A∩B)P(A \cap B)P(A∩B) is the probability of both events AAA and BBB 

occurring, and P(B)P(B)P(B) is the probability of event BBB occurring. 

Bayes' Rule: 



Bayes' rule is a fundamental theorem in probability theory that describes how to update the 

probability of a hypothesis HHH given evidence EEE in light of prior knowledge 

P(H)P(H)P(H) and P(E∣H)P(E|H)P(E∣H). It's given by: 

P(H∣E)=P(E∣H)×P(H)P(E)P(H|E) = \frac{P(E|H) \times 

P(H)}{P(E)}P(H∣E)=P(E)P(E∣H)×P(H) 

where: 

 P(H∣E)P(H|E)P(H∣E) is the posterior probability of hypothesis HHH given evidence 

EEE, 

 P(E∣H)P(E|H)P(E∣H) is the likelihood of observing evidence EEE given hypothesis 

HHH, 

 P(H)P(H)P(H) is the prior probability of hypothesis HHH, 

 P(E)P(E)P(E) is the marginal probability of evidence EEE. 

Bayes' rule is particularly useful in fields like statistics, machine learning, and medical 

diagnosis. 

Independence: 

Events AAA and BBB are independent if the occurrence of one event does not affect the 

occurrence of the other. Mathematically, two events are independent if: 

P(A∩B)=P(A)×P(B)P(A \cap B) = P(A) \times P(B)P(A∩B)=P(A)×P(B) 

or equivalently: 

P(A∣B)=P(A)P(A|B) = P(A)P(A∣B)=P(A) P(B∣A)=P(B)P(B|A) = P(B)P(B∣A)=P(B) 

If events AAA and BBB are independent, then knowing that one event has occurred does not 

provide any information about the occurrence of the other. 

Understanding these concepts is crucial for various applications in probability theory, 

statistics, and decision-making processes in many fields. 

 



Random Variables and Probability Distributions 

Random Variable Definition 

In probability, a random variable is a real valued function whose domain is the sample 

space of the random experiment. It means that each outcome of a random experiment is 

associated with a single real number, and the single real number may vary with the different 

outcomes of a random experiment. Hence, it is called a random variable and it is generally 

represented by the letter “X”. 

For example, let us consider an experiment for tossing a coin two times. 

Hence, the sample space for this experiment is S = {HH, HT, TH, TT} 

If X is a random variable and it denotes the number of heads obtained, then the values are 

represented as follows: 

X(HH) = 2, X(HT) = 1, X(TH) = 1, X(TT) = 0. 

Similarly, we can define the number of tails obtained using another variable, say Y. 

(i.e) Y(HH) = 0, Y(HT) = 1, Y(TH) = 1, Y(TT)= 2. 

Random Variables 

A variable is something which can change its value. It may vary with different outcomes of an 

experiment. If the value of a variable depends upon the outcome of a random experiment it is a 

random variable. A random variable can take up any real value. 

Mathematically, a random variable is a real-valued function whose domain is a sample space S 

of a random experiment. A random variable is always denoted by capital letter like X, Y, M 

etc. The lowercase letters like x, y, z, m etc. represent the value of the random variable. 

Consider the random experiment of tossing a coin 20 times. You will earn Rs. 5 is you get 

head and will lose Rs. 5 if it a tail. You and your friend are all set to see who will win the 

game by earning more money. Here, we see that the value of getting head for the coin tossed 

for 20 times is anything from zero to twenty. If we denote the number of a head by X, then 

https://byjus.com/maths/sample-space/
https://byjus.com/maths/sample-space/
https://www.toppr.com/guides/business-economics-cs/mathematics-of-finance-and-elementary-probability/random-experiment/
https://www.toppr.com/guides/maths/trigonometric-functions/domain-and-range-of-trigonometric-functions/
https://www.toppr.com/guides/economics/money-and-credit/all-about-money-and-credit/


X = {0, 1, 2, … , 20}. The probability of getting a head is always ½. 

Properties of a Random Variable 

 It only takes the real value. 

 If X is a random variable and C is a constant, then CX is also a random variable. 

 If X1 and X2 are two random variables, then X1 + X2 and X1 X2 are also random. 

 For any constants C1 and C2, C1X1 + C2X2 is also random. 

 |X| is a random variable. 

Types of Random Variable 

A random variable can be categorized into two types. 

Discrete Random Variable 

As the name suggests, this variable is not connected or continuous. A variable which can only 

assume a countable number of real values i.e., the value of the discrete random sample is 

discrete in nature. The value of the random variable depends on chance. In other words, a real-

valued function defined on a discrete sample space is a discrete random variable. 

The number of calls a person gets in a day, the number of items sold by a company, the 

number of items manufactured, number of accidents, number of gifts received on birthday etc. 

are some of the discrete random variables. 

Continuous Random variable 

A variable which assumes infinite values of the sample space is a continuous random variable. 

It can take all possible values between certain limits. It can also take integral as well as 

fractional values. The height, weight, age of a person, the distance between two cities etc. are 

some of the continuous random variables. 

 

https://www.toppr.com/guides/business-studies/business-services/nature-and-types-of-services/
https://www.toppr.com/guides/business-laws/companies-act-2013/meaning-and-features-of-a-company/
https://www.toppr.com/guides/maths/limits-and-derivatives/limits/


Probability Distribution 

For any event of a random experiment, we can find its corresponding probability. For different 

values of the random variable, we can find its respective probability. The values of random 

variables along with the corresponding probabilities are the probability distribution of the 

random variable. 

Assume X is a random variable. A function P(X) is the probability distribution of X. Any 

function F defined for all real x by F(x) = P(X ≤ x) is called the distribution function of the 

random variable X. 

Properties of Probability Distribution 

 The probability distribution of a random variable X is P(X = xi) = pi for x = xi and P(X = 

xi) = 0 for x ≠ xi. 

 The range of probability distribution for all possible values of a random variable is from 0 

to 1, i.e., 0 ≤ p(x) ≤ 1. 

Probability Distribution of a Discrete Random Variable 

If X is a discrete random variable with discrete values x1, x2, … , xn, … then the probability 

function is P(x) = pX(x). The distribution function is 

FX(x) = P(X ≤ xi) = ∑i p(xi) = pi 

if x = xi and is 0 for other values of x. Here, i = 1, 2, … , n, … 

Expected values of endorse variables" and of functions of random variables 

Expected values of random variables and functions of random variables: 

 

 



Expected Value of Random Variables: 

The expected value (or mean) of a random variable XXX is a measure of the "average" or 

"center" of its distribution. For a discrete random variable XXX with probability mass 

function P(X)P(X)P(X), the expected value E[X]E[X]E[X] is calculated as: 

E[X]=∑xx⋅P(X=x)E[X] = \sum_{x} x \cdot P(X=x)E[X]=∑xx⋅P(X=x) 

For a continuous random variable XXX with probability density function f(x)f(x)f(x), the 

expected value E[X]E[X]E[X] is calculated as: 

E[X]=∫−∞∞x⋅f(x) dxE[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dxE[X]=∫−∞∞x⋅f(x)dx 

The expected value represents the "long-run average" if the random experiment is repeated 

many times. 

Properties of Expected Values: 

1. Linearity: For constants aaa and bbb, and random variables XXX and YYY, the 

expected value has the property: E[aX+bY]=aE[X]+bE[Y]E[aX + bY] = aE[X] + 

bE[Y]E[aX+bY]=aE[X]+bE[Y] 

2. Constant: For any constant ccc, E[c]=cE[c] = cE[c]=c. 

3. Expectation of a Function: If g(X)g(X)g(X) is a function of random variable XXX, 

then: E[g(X)]=∑xg(x)⋅P(X=x)E[g(X)] = \sum_{x} g(x) \cdot P(X=x)E[g(X)]=∑x

g(x)⋅P(X=x) (for discrete XXX) or E[g(X)]=∫−∞∞g(x)⋅f(x) dxE[g(X)] = \int_{-

\infty}^{\infty} g(x) \cdot f(x) \, dxE[g(X)]=∫−∞∞g(x)⋅f(x)dx (for continuous XXX). 

Expected Value of Functions of Random Variables: 

If XXX is a random variable and g(X)g(X)g(X) is a function of XXX, then the expected 

value of g(X)g(X)g(X) is denoted by E[g(X)]E[g(X)]E[g(X)]. It's calculated by finding the 

expected value of g(X)g(X)g(X) for all possible values of XXX, weighted by their respective 

probabilities (or probability densities). 

For example, if XXX is a random variable representing the outcome of rolling a fair six-sided 

die, and g(X)=X2g(X) = X^2g(X)=X2, then: 



E[g(X)]=E[X2]=∑x=16x2⋅16E[g(X)] = E[X^2] = \sum_{x=1}^{6} x^2 \cdot 

\frac{1}{6}E[g(X)]=E[X2]=∑x=16x2⋅61 

or, if XXX follows a continuous distribution, you would integrate over the range of XXX 

instead of summing. 

Properties of Expected Values of Functions: 

1. Linearity: The linearity property holds for expected values of functions of random 

variables as well. That is, for constants aaa and bbb, and random variable XXX, 

YYY, and ZZZ, we have: E[ag(X)+bh(Y)]=aE[g(X)]+bE[h(Y)]E[a g(X) + b h(Y)] = a 

E[g(X)] + b E[h(Y)]E[ag(X)+bh(Y)]=aE[g(X)]+bE[h(Y)] 

2. Expectation of a Constant: E[c]=cE[c] = cE[c]=c for any constant ccc. 

These properties make the expected value an essential tool in probability theory and statistics, 

helping to quantify uncertainty and make predictions about random phenomena. 

Continuous distributions (uniform, binomial, normal, poison and 

exponential random variables) 

Continuous distributions are mathematical representations of random variables that can take 

on an infinite number of possible values within a given range. These distributions are 

characterized by probability density functions (PDFs), which describe the likelihood of a 

random variable assuming certain values. 

Here's an overview of some common continuous distributions: 

1. Uniform Distribution: 

o The uniform distribution is defined over a finite interval and is characterized 

by constant probability density within that interval. 

o It is often denoted as U(a,b)U(a, b)U(a,b), where aaa and bbb are the lower 

and upper bounds of the interval, respectively. 

o The probability density function is given by: f(x)=1b−a,for a≤x≤bf(x) = 

\frac{1}{b - a}, \quad \text{for } a \leq x \leq bf(x)=b−a1,for a≤x≤b 

o All values within the interval have an equal probability of occurring. 

 



2. Normal Distribution (Gaussian Distribution): 

o The normal distribution is perhaps the most widely known and utilized 

continuous distribution. 

o It is characterized by a bell-shaped curve and is fully defined by two 

parameters: the mean (μ\muμ) and the standard deviation (σ\sigmaσ). 

o The probability density function of the normal distribution is given by: 

f(x)=12πσe−(x−μ)22σ2f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-

\mu)^2}{2\sigma^2}}f(x)=2πσ1e−2σ2(x−μ)2 

o It is symmetric around the mean and approximately 68% of the data falls 

within one standard deviation of the mean (empirical rule). 

3. Binomial Distribution: 

o Although often associated with discrete random variables, the binomial 

distribution can also be approximated for continuous random variables when 

the number of trials is large. 

o It represents the number of successes in a fixed number of independent 

Bernoulli trials, each with the same probability of success. 

o The probability density function for the binomial distribution is given by: 

f(x)=(nx)px(1−p)n−xf(x) = \binom{n}{x} p^x (1-p)^{n-x}f(x)=(xn

)px(1−p)n−x where nnn is the number of trials, xxx is the number of 

successes, and ppp is the probability of success in each trial. 

4. Poisson Distribution: 

o The Poisson distribution models the number of events occurring within a fixed 

interval of time or space when these events occur with a known constant rate 

and independently of the time since the last event. 

o It is characterized by a single parameter, usually denoted by λ\lambdaλ, which 

represents the average rate of occurrence of the events. 

o The probability mass function of the Poisson distribution is given by: 

f(x)=e−λλxx!f(x) = \frac{e^{-\lambda} \lambda^x}{x!}f(x)=x!e−λλx where 

xxx represents the number of events occurring in the given interval. 

5. Exponential Distribution: 

o The exponential distribution models the time between events in a Poisson 

process, where events occur continuously and independently at a constant 

average rate. 



o It is characterized by a single parameter, often denoted by λ\lambdaλ, which 

represents the rate parameter (the average number of events occurring in a unit 

interval of time). 

o The probability density function of the exponential distribution is given by: 

f(x)=λe−λx,for x≥0f(x) = \lambda e^{-\lambda x}, \quad \text{for } x \geq 

0f(x)=λe−λx,for x≥0 where xxx represents the time between events. 

These continuous distributions have various applications in fields such as statistics, finance, 

engineering, and natural sciences, providing valuable tools for modeling and analyzing 

random phenomena. 

 

Random Sampling and Jointly Distributed Random Variables 

 

Density and distribution functions for jointly distributed random variables 

computing expected values 

Random variables refer to a set of two or more random variables that are dependent on the 

same underlying probability space. Understanding their density and distribution functions is 

crucial for computing expected values and analyzing their behavior. Let's explore these 

concepts in more detail: 

1. Joint Probability Density Function (PDF): 

o For jointly distributed continuous random variables XXX and YYY, the joint 

probability density function fXY(x,y)f_{XY}(x, y)fXY(x,y) describes the 

probability of observing values xxx and yyy simultaneously. 

o Properties of joint PDF: 

 fXY(x,y)≥0f_{XY}(x, y) \geq 0fXY(x,y)≥0 for all xxx and yyy. 

 ∫−∞∞∫−∞∞fXY(x,y) dx dy=1\int_{-\infty}^{\infty} \int_{-

\infty}^{\infty} f_{XY}(x, y) \, dx \, dy = 1∫−∞∞∫−∞∞fXY

(x,y)dxdy=1, indicating that the total probability over all possible 

outcomes is 1. 



2. Marginal Probability Density Function: 

o Marginal PDFs describe the probability distribution of individual random 

variables from a joint distribution. 

o The marginal PDF of XXX, denoted as fX(x)f_X(x)fX(x), is obtained by 

integrating the joint PDF over all possible values of YYY: 

fX(x)=∫−∞∞fXY(x,y) dyf_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) \, dyfX

(x)=∫−∞∞fXY(x,y)dy 

o Similarly, the marginal PDF of YYY, denoted as fY(y)f_Y(y)fY(y), is 

obtained by integrating the joint PDF over all possible values of XXX. 

3. Joint Cumulative Distribution Function (CDF): 

o The joint cumulative distribution function FXY(x,y)F_{XY}(x, y)FXY(x,y) 

gives the probability that XXX and YYY are less than or equal to certain 

values xxx and yyy respectively: FXY(x,y)=P(X≤x,Y≤y)F_{XY}(x, y) = P(X 

\leq x, Y \leq y)FXY(x,y)=P(X≤x,Y≤y) 

o From the joint CDF, marginal CDFs can be obtained by fixing one variable 

and letting the other vary. 

4. Expected Values: 

o Expected values of functions of jointly distributed random variables can be 

computed using double integrals. 

o For a function g(X,Y)g(X, Y)g(X,Y) of jointly distributed random variables 

XXX and YYY, the expected value is given by: 

E[g(X,Y)]=∬all spaceg(x,y) fXY(x,y) dx dyE[g(X, Y)] = \iint_{\text{all 

space}} g(x, y) \, f_{XY}(x, y) \, dx \, dyE[g(X,Y)]=∬all spaceg(x,y)fXY

(x,y)dxdy 

o The expected value of a function g(X,Y)g(X, Y)g(X,Y) can also be computed 

by integrating over the range of possible values for each variable, weighted by 

the joint PDF. 

Understanding these density and distribution functions allows for the analysis of the joint 

behavior of random variables, calculation of probabilities, and estimation of expected values 

for various functions of interest. They are fundamental in probability theory and statistics, 

with applications in fields such as finance, engineering, and biology. 

 



Covariance and correlation coefficients sampling 

Covariance and correlation coefficients are measures used to quantify the relationship 

between two random variables in a sample or a population. 

1. Covariance: 

o Covariance measures the degree to which two random variables change 

together. If the covariance is positive, it indicates that the variables tend to 

increase or decrease together. If it's negative, it means they move in opposite 

directions. 

o Mathematically, the covariance cov(X,Y)\text{cov}(X, Y)cov(X,Y) between 

two random variables XXX and YYY is defined as: 

cov(X,Y)=E[(X−μX)(Y−μY)]\text{cov}(X, Y) = E[(X - \mu_X)(Y - 

\mu_Y)]cov(X,Y)=E[(X−μX)(Y−μY)] where EEE represents the expected 

value operator, μX\mu_XμX and μY\mu_YμY are the means of XXX and 

YYY respectively. 

o Properties: 

 Covariance can range from negative infinity to positive infinity. 

 It's not standardized, meaning it depends on the scales of the variables. 

 It's affected by outliers. 

2. Correlation Coefficient: 

o The correlation coefficient measures the strength and direction of the linear 

relationship between two variables. Unlike covariance, it is standardized and 

ranges from -1 to 1. 

o Pearson correlation coefficient (ρ\rhoρ) is the most common measure of 

correlation for continuous variables. It's defined as: 

ρXY=cov(X,Y)σXσY\rho_{XY} = \frac{\text{cov}(X, Y)}{\sigma_X 

\sigma_Y}ρXY=σXσYcov(X,Y) where σX\sigma_XσX and σY\sigma_YσY 

are the standard deviations of XXX and YYY respectively. 

o Spearman correlation coefficient is used when dealing with ordinal variables 

or when the relationship is non-linear. 

o Properties: 

 Correlation coefficient ranges from -1 to 1. 



 A value of 1 indicates a perfect positive linear relationship, -1 indicates 

a perfect negative linear relationship, and 0 indicates no linear 

relationship. 

 It's unaffected by changes in scale or units. 

 It's not sensitive to outliers as covariance. 

When dealing with sampling, it's important to understand that the sample covariance and 

correlation coefficients are estimates of the population covariance and correlation. They are 

calculated using sample data and may not perfectly reflect the true relationship in the 

population. As sample size increases, these estimates tend to converge to the population 

parameters. 

To compute sample covariance and correlation coefficients, you would use the sample means 

and sample standard deviations instead of the population means and standard deviations in 

the formulas mentioned above. Additionally, you'd use the sample variance when computing 

the sample correlation coefficient. These statistics provide valuable insights into the 

relationships between variables in a sample and are widely used in data analysis and 

statistical inference. 

Principal steps in a sample survey, methods of sampling, the role of 

sampling theory properties of random samples 

Principal Steps in a Sample Survey: 

a. Define the Objective: Clearly state the purpose of the survey and the population of 

interest. 

b. Design the Survey: Determine the survey methodology, including the sampling method, 

questionnaire design, and data collection procedures. 

c. Select the Sample: Choose a representative subset of the population from which data will 

be collected. 

d. Data Collection: Administer the survey to the selected sample. 



e. Data Analysis: Process and analyze the collected data to draw conclusions and make 

inferences about the population. 

f. Report Findings: Present the survey results in a clear and understandable format, often 

including descriptive statistics, tables, and charts. 

Methods of Sampling: 

a. Simple Random Sampling: Every member of the population has an equal chance of being 

selected, and each sample of the same size has an equal chance of being chosen. 

b. Stratified Sampling: The population is divided into subgroups (strata) based on certain 

characteristics, and random samples are then drawn from each stratum. 

c. Cluster Sampling: The population is divided into clusters, and a random sample of 

clusters is selected. Then, data is collected from all members within the selected clusters. 

d. Systematic Sampling: A random starting point is chosen, and then every nth member of 

the population is selected to be part of the sample. 

e. Convenience Sampling: Sampling based on the availability and accessibility of subjects. 

f. Snowball Sampling: Existing study subjects recruit future subjects from among their 

acquaintances. 

Role of Sampling Theory: 

Sampling theory provides a framework for making inferences about a population based on a 

sample. It involves understanding the properties of random samples, such as: 

a. Representativeness: A sample should accurately represent the population from which it is 

drawn. 

b. Bias: Samples should be selected in a way that minimizes bias, ensuring that every 

member of the population has an equal chance of being selected. 

c. Precision: Precision refers to the amount of variability or uncertainty in the estimates 

derived from the sample. Sampling theory helps quantify this uncertainty. 



d. Efficiency: Efficient sampling methods aim to minimize the sample size while still 

achieving the desired level of precision. 

e. Generalizability: Sampling theory helps determine the extent to which findings from a 

sample can be generalized to the population. 

Sampling theory also guides the selection of appropriate sampling methods and the 

calculation of sample sizes necessary to achieve desired levels of precision and confidence in 

survey results. It underpins the validity and reliability of survey findings and is essential for 

sound statistical inference. 

Point and Interval Estimation 

Estimation of population parameters using methods of moments and maximum likelihood 

procedures are two common approaches in statistics used to estimate unknown parameters of 

a population based on a sample from that population. 

Method of Moments: 

The method of moments is a technique for estimating population parameters by equating 

sample moments with population moments. Here's a general overview of the method: 

1. Sample Moments: Moments such as the mean, variance, skewness, etc., are 

calculated from the sample data. 

2. Population Moments: Expressions for the moments of the population distribution in 

terms of the parameters are derived. 

3. Equating Moments: By equating the sample moments to their corresponding 

population moments, expressions for the population parameters are obtained. 

4. Solving for Parameters: The equations derived in step 3 are solved to obtain 

estimates for the population parameters. 

Maximum Likelihood Estimation (MLE): 

Maximum likelihood estimation is a method for estimating the parameters of a statistical 

model. It involves maximizing a likelihood function, which represents the probability of 

observing the given sample data given a specific set of parameter values. Here's how it 

works: 



1. Likelihood Function: Construct a likelihood function based on the probability 

distribution assumed for the data and the parameters to be estimated. 

2. Maximization: Maximize the likelihood function with respect to the parameters. This 

is often done by taking the derivative of the likelihood function with respect to each 

parameter, setting the derivatives equal to zero, and solving for the parameters. 

3. Parameter Estimation: The parameter values that maximize the likelihood function 

are the maximum likelihood estimates. 

Properties of Estimators: 

Properties of estimators refer to desirable characteristics that make an estimator useful or 

reliable. Some common properties include: 

1. Unbiasedness: An estimator is unbiased if, on average, it produces parameter 

estimates that are equal to the true parameter values. In other words, the expected 

value of the estimator equals the true parameter value. 

2. Consistency: An estimator is consistent if, as the sample size increases, the estimator 

converges in probability to the true parameter value. In simpler terms, as more data is 

collected, the estimate gets closer and closer to the true value. 

3. Efficiency: An efficient estimator has the smallest variance among all unbiased 

estimators. It provides the most precise estimates for a given sample size. 

4. Asymptotic Normality: Asymptotic normality means that as the sample size 

approaches infinity, the distribution of the estimator approaches a normal distribution 

centered at the true parameter value, with a variance that depends on the sample size. 

5. Robustness: Robust estimators are less sensitive to violations of assumptions or 

outliers in the data. They provide reliable estimates even in the presence of such 

issues. 

Both the method of moments and maximum likelihood estimation can produce estimators 

with these desirable properties under certain conditions, making them valuable tools in 

statistical inference. However, the choice between the two methods often depends on the 

specific characteristics of the data and the underlying population distribution. 

 



Confidence intervals for population parameters 

Confidence intervals are a fundamental tool in statistics used to estimate the range within 

which a population parameter is likely to fall with a specified level of confidence. They 

provide a way to quantify the uncertainty associated with estimating population parameters 

from sample data. 

Overview of Confidence Intervals: 

1. Point Estimation: Before understanding confidence intervals, it's crucial to grasp the 

concept of point estimation. Point estimation involves using sample data to calculate a 

single value, known as a point estimate, which serves as the best guess for the 

population parameter. For example, the sample mean is often used as a point estimate 

for the population mean. 

2. Uncertainty in Point Estimates: Point estimates alone do not provide information 

about the uncertainty or variability associated with estimating the population 

parameter. Due to sampling variability, different samples from the same population 

can yield different point estimates. 

3. Confidence Intervals: A confidence interval provides a range of values within which 

the true population parameter is estimated to lie, along with a specified level of 

confidence. The confidence level represents the proportion of intervals, calculated 

from repeated samples, that would contain the true population parameter. 

4. Calculation: Confidence intervals are typically constructed around point estimates 

using statistical methods. The width of the confidence interval depends on the 

variability of the data and the chosen confidence level. Commonly used methods for 

constructing confidence intervals include the normal distribution for large samples (z-

interval) and the t-distribution for small samples (t-interval). 

5. Interpretation: A confidence interval does not imply that a certain percentage of the 

population falls within that range. Instead, it indicates the uncertainty associated with 

the estimation process. For example, a 95% confidence interval means that if we were 

to sample from the population repeatedly and construct confidence intervals in the 

same way, approximately 95% of those intervals would contain the true population 

parameter. 



6. Confidence Level: The confidence level, often denoted as 1−α1 - \alpha1−α, 

determines the probability that the confidence interval contains the true population 

parameter. Commonly used confidence levels include 90%, 95%, and 99%. The 

choice of confidence level depends on the desired balance between precision and 

confidence. 

7. Precision vs. Confidence: There is a trade-off between the width of the confidence 

interval and the confidence level. Higher confidence levels result in wider intervals, 

providing greater assurance that the true parameter is captured. However, wider 

intervals may lack precision. Conversely, lower confidence levels yield narrower 

intervals but with less certainty of capturing the true parameter. 

8. Application: Confidence intervals are widely used in various fields, including 

medicine, economics, and social sciences, to estimate population parameters such as 

means, proportions, differences between means, regression coefficients, etc. 

In summary, confidence intervals provide a range of values that likely contain the true 

population parameter, along with a specified level of confidence. They are essential for 

quantifying the uncertainty associated with point estimates and are a fundamental tool in 

statistical inference. 

 

 

 

 

 

 
 


